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ABSTRACT

We consider solutions of functional-differential equations

f ′(x) = a(x)f(g(x)) + b(x)f(x) + c(x)

in both real and complex variables. We characterize entire solutions g

when f is a meromorphic function in the complex plane and a 6= 0, b, c

are constants or polynomials. We also examine questions of existence and

uniqueness of the solutions in the real variable for initial value problems

and provide theorems that are valid “in the large”.

1.

The purpose of this article is to study existence and uniqueness problems, and

to characterize solutions of functional-differential equations

(1.1) f ′(x) = af(g(x))

and their generalizations

(1.2) f ′(x) = af(g(x)) + bf(x) + c,
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where a 6= 0, b, c are constants, or more generally, functions. Such equations ap-

pear in the theory of boundary value problems of hyperbolic partial differential

equations and include the pantograph equations f ′(x) = af(αx)+ bf(x) (a, b, α

are constants) as a special case, which have numerous applications ranging from

cell growth models to current collection systems for an electric locomotive to

wavelets (see e.g. [OT] and [W] and references therein) and have been studied for

both real and complex variables by numerous authors. When g(x) = x−k, k > 0

a fixed number, the equation (1.1) is the well-known and extensively studied lin-

ear differential-difference (or delay-differential) equation (see [BC]). In [U], Utz

posed the problem of existence for the equation (1.1). Siu ([S]) gave existence

and uniqueness results for (1.1) that are global in nature under certain condi-

tions on the function g and the constant a. The problems of local existence and

uniqueness for more general equations were considered by Anderson in [A] and

by Oberg in [O1] for local real solutions and in [O2] for local complex solutions.

Related equations of complex variable were also considered in [B], [BMW], [D],

[DI], [G], [GY], etc. It was proved in [G] that if f is a nonconstant entire func-

tion and g is an entire function in the complex plane C satisfying the equation

(1.1) with a being a constant, then g must be linear. The same conclusion was

extended recently in [BMW] to the equations f ′ = af(g) + bf with a 6= 0, b

being constants, which thus reduce to pantograph type equations in this case.

However, no such characterization is known when f is a meromorphic function

in C; it is only known ([GY]) that g is a polynomial when f is a transcendental

meromorphic function in C.

Despite the large number of studies concerning these equations, and the oc-

casional overlap of some of the results, some questions still remain unsolved. In

particular, it is unknown whether g is linear in (1.1) when f is a transcendental

meromorphic function in C. This is one of the problems we are going to solve in

this paper. We present our results in two sections. In Section 2, we characterize

entire solutions g for (1.1) and also (1.2) when f is a meromorphic function in

C; and in Section 3, we investigate the existence and uniqueness problems to

such equations for x ∈ [0, L] ⊂ R.

To establish our results, we need to employ different analytical tools and

techniques in the following sections, including Nevanlinna theory in Section 2,

and the operator theory in Section 3. We note, however, that the problem

and the results in Section 2 are independent of Nevanlinna theory; it would be

interesting to discover an elementary proof without using Nevanlinna theory.
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2.

In this section we will characterize entire functions g for the equations (1.1) and

more general equations (1.2) when f is a meromorphic function in C and a, b, c

are constants (Theorem 2.1) or, more generally, polynomials (Theorem 2.4).

When f is a nonconstant entire function in (1.1), it is known that only en-

tire solutions g are linear functions ([G], [BMW]). This result is however false

when f is a meromorphic function (see below). We will see that whether f is

transcendental or not also makes the situations different.

For clarity, the independent variable will be denoted by z when it is complex.

Theorem 2.1: Suppose that f is a nonconstant meromorphic function and g

is an entire function in C satisfying the equation f ′(x) = af(g(z)) + bf(z) + c

with a 6= 0, b, c being constants. Then

(i) g must be linear, if f is transcendental;

(ii) g must be a polynomial of degree less than or equal to 2, if f is

rational; furthermore, the degree of g is 2 if and only if f = α
z−w0

+ β,

g = w0 − a(z − w0)
2 and b = aβ + c = 0, where α 6= 0, β, w0 are complex

numbers.

Remark: The equations in Theorem 2.1 include Eq. (1.1) as a special case. We

see that g might be nonlinear when f is meromorphic. A result on the growth

of f can be obtained from [GY] when g is a nonlinear entire function and f is a

transcendental meromorphic function in C. However, we now see from Theorem

2.1 (i) that when g is nonlinear, f cannot be transcendental. In fact, when g

is nonlinear, Theorem 2.1(ii) completely characterizes f , which must be of the

form f = α
z−w0

+ β for some α 6= 0, β, w0.

From the above remark, we have the following

Corollary 2.2: Suppose that f is a meromorphic function and g is an entire

function in C satisfying the equation in Theorem 2.1. If g is nonlinear, then the

solution f must be of the form f = α
z−w0

+ β for some constants α, β, w0.

If b 6= 0, then by Theorem 2.1(ii), g cannot be nonlinear. Thus, we have the

following
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Corollary 2.3: Let b 6= 0 in the equation in Theorem 2.1. Suppose that f is

a meromorphic function and g is an entire function in C satisfying the equation.

If g is nonlinear, then the solution f must be a constant.

Remark: The condition b 6= 0 cannot be dropped in Corollary 2.3, as seen in

Theorem 2.1 (ii). In fact, if b = 0, then f = 1/z − c/a, which is nonconstant,

and g = −az2, which is nonlinear, satisfy the equation f ′ = af(g) + c, which is

of the form of the equations in Theorem 2.1 with b = 0.

To prove Theorem 2.1, we will employ Nevanlinna theory. For the reader’s

convenience, we recall some notation and results in Nevanlinna theory (see e.g.

[Y]), which will be needed in the proof of Theorem 2.1. Let f be a meromorphic

function in C. Then the Nevanlinna characteristic T (r, f) is defined as

T (r, f) = m(r, f) + N(r, f),

where

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ; log+ |x| = max(0, log |x|)

and

N(r, f) =

∫ r

0

n(t, f) − n(0, f)

t
dt + n(0, r) log r;

n(t, f) denotes the number of poles of f (counting multiplicity) in |z| < r. Recall

the following known results:

(i) T (r, f) is an increasing convex function of log r. T (r, f) = T (r, 1/f)+O(1).

T (r, fg) ≤ T (r, f)+ T (r, g), T (r, f + g) ≤ T (r, f)+ T (r, g)+ O(1). The last two

inequalities also hold for m(r, f). See [Y, pp. 8–9, p. 12] for these results.

(ii) f is transcendental if and only if ([Y, p. 25])

(2.1) limr→∞

T (r, f)

log r
= ∞.

(iii) The logarithmic derivative lemma([Y, p. 17]):

(2.2) m(r, f ′/f) = o{T (r, f)}

for all r outside possibly a set of finite Lebesgue measure.

(iv) If f (meromorphic) and g (entire) are transcendental, then

(2.3) lim
r/∈E

sup
r→∞

T (r, f(g))

T (r, f)
= ∞,
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where E is any set of finite Lebesgue measure (see [C, Theorem 2] and [GY,

p. 370]).

(v) If g = amzm + am−1z
m−1 + · · · + a1z + a0 is a nonconstant polynomial,

then for any ǫ > 0,

(2.4) T (r, f(g)) ≥ (1 − ǫ)T
(am

2
rm, f

)

for large r (see [GY, (19)]).

Proof of Theorem 2.1: First of all, we have that

T (r, f ′ − bf) = N(r, f ′ − bf) + m(r, f ′ − bf)

≤ 2N(r, f) + m
(

r,
f ′ − bf

f

)

+ m(r, f)

≤ 2T (r, f) + o{T (r, f)}

outside possibly a set of finite Lebesgue measure, by (2.2). We then have that

(2.5)
T (r, f(g)) = T

(

r,
f ′ − bf

a
− c

a

)

≤ T (r, f ′ − bf) + O(1)

≤ 2T (r, f) + o{T (r, f)}

outside possibly a set of finite Lebesgue measure. We then see that g must be

a polynomial, sine if g was transcendental, then it is easy to see from the given

equation f ′(x) − bf − c = af(g(z)) that f would be also transcendental, which

is impossible by (2.5) and (2.3).

Now, we write g = amzm + am−1z
m−1 + · · · + a1z + a0. If m ≤ 1, then

the conclusions (i) and (ii) of Theorem 2.1 both already hold. Thus, in the

following we assume that m ≥ 2. We will show that m = 2 and f cannot be

transcendental. This, of course, will imply (i) and the first part of (ii) of the

theorem.

By (2.4), we have that

(2.6) T (r, f(g)) ≥ (1 − ǫ1)T (am/2rm, f)

for any ǫ1 > 0. Recall that T (r, f) is a convex function of log r. Thus, for large

r, we have that

T (r, f) − T (1, f)

log r − log 1
≤ T (am/2rm, f) − T (1, f)

log(am/2rm) − log 1
,

which implies that

(2.7) T (r, f) ≤ 1

m
(1 + ǫ2)T (am/2rm, f)
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for any ǫ2 > 0 and large r. Combining this with (2.5) and (2.6) we obtain that

mT (r, f) ≤ 1 + ǫ2
1 − ǫ1

(2T (r, f) + o{T (r, f)})

for large r outside possibly a set of finite Lebesgue measure. This implies that

m ≤ 2.

From above, we have proved that m = 2. We write g as g(z) = α(z− z0)
2 +β

with α 6= 0, β, z0 being complex numbers.

We claim that f has at most one pole. Suppose that f has at least two distinct

poles. We can arrange all the distinct poles of f according to their orders in

an increasing order: a1, a2, . . . , an, . . . with orders m1, m2, m3, . . ., respectively,

where m1 ≤ m2 ≤ m3 ≤ · · ·. We then write f = 1
(z−a1)m1 (z−a2)m2

A(z), where

A(z) is a meromorphic function, which is analytic at a1, a2 and A(a1) 6= 0,

A(a2) 6= 0. Then, the given equation f ′ = af(g)+ bf + c, or f ′− bf = af(g)+ c,

becomes

B(z)

(z − a1)m1+1(z − a2)m2+1
− bA(z)

(z − a1)m1(z − a2)m2

=

(2.8)
aA(g(z))

(g(z) − a1)m1(g(z) − a2)m2

+ c

where B(z) is a meromorphic function, which is analytic at a1, a2 and satisfies

that B(a1) 6= 0, B(a2) 6= 0. Now consider two cases: β 6= a1 and β = a1, where

β is the number in the above expression of g. If β 6= a1, then g(z) − a1 = 0

has two distinct roots, which are both poles of the right hand side of (2.8) with

order m1. But, all the poles of the left hand side of (2.8) have order at least

m1 + 1, a contradiction. If β = a1, then β 6= a2. Thus, g(z) − a2 = 0 has

two distinct zeros, which, for the same reason as above, are both poles of the

right hand side of (2.8) with order m2. But, all the poles of the right hand

side of (2.8) have order at least m2 + 1 > m2, except the pole a1 with order

m1 + 1, which is possibly less than m2 + 1. That is, the left hand side of (2.8)

cannot have two distinct poles with order m2. This is impossible. We have thus

showed that f has at most one pole. Therefore, we can write f(z) = Q(z)h(z),

where Q = 1
(z−w0)l for some positive integer l, and h is an entire function with

h(w0) 6= 0.

Suppose now that f is transcendental. Then h is transcendental. The original

equation in the theorem can be written as

Q′h + Qh′ = aQ(g)h(g) + bQh + c,



Vol. 162, 2007 SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 341

or

(2.9) h(g) =
Q′h + Qh′ − bQh− c

aQ(g)
= h

(Q′ + Qh′

h − bQ

aQ(g)

)

− c

aQ(g)
,

from which it follows that

T (r, h(g)) = m(r, h(g)) ≤ m(r, h) + m(r,
h′

h
) + O{log r}

≤ T (r, h) + o{T (r, h)},

for all r outside a set of finite Lebesgue measure by (2.1) and (2.2). But, by

(2.4), we have that

T (r, h(g)) ≥ (1 − ǫ3)T (
α

2
r2, h)

for any ǫ3 > 0 and large r. Also, by the convexity of T (r, h) in log r, we have

that

T (r, h) ≤ 1

2
(1 + ǫ4)T (

α

2
r2, h)

for any ǫ4 > 0 and large r (cf. the proof of (2.7)). These inequalities yield that

T (r, h) ≤ 1

2

1 + ǫ4
1 − ǫ3

(T (r, h) + o{T (r, h)}).

This implies that T (r, h) = o{T (r, h)}, which is absurd. This proves that f

cannot be transcendental and thus proves the conclusion (i) of the theorem.

Next, if f = Qh = 1
(z−w0)l h, defined above, is a rational function and g is a

polynomial of degree 2, then h is a polynomial. By comparing the order of the

pole w0 in the two sides of the given equation f ′ − bf = af(g) + c and noting

that g has degree 2, we must have that l + 1 = 2l, i.e., l = 1. Then by the given

equation again, we have that

(z − w0)h
′ − h

(z − w0)2
= a

h(g)

g − w0
+ b

h

z − w0
+ c

or

((z − w0)h
′ − h)(g − w0) =

(2.10) ah(g)(z − w0)
2 + bh(z − w0)(g − w0) + c(z − w0)

2(g − w0).

Suppose that the degree of h is d ≥ 0. If d ≥ 2, then it is easy to check that

the left hand side of (2.10) has degree d+2, while the right hand side has degree

2d + 2, which is impossible. Thus, we have that d = 0 or d = 1.
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We can then write f = β + α
z−w0

for some constants α 6= 0, β. The given

equation can be then written as

− α

(z − w0)2
=

aα

g − w0
+

bα

z − w0
+ c + (a + b)β,

from which it follows that

g − w0 =
aα(z − w0)

2

−α − bα(z − w0) − ((a + b)β + c)(z − w0)2
.

But, g is a polynomial of degree 2. Thus, we must have that bα = (a+b)β+c = 0,

which implies that b = 0, aβ + c = 0, and then g = w0 − a(z −w0)
2. Therefore,

f and g are of the forms in Theorem 2.1 (ii).

Conversely, if f and g have the forms in Theorem 2.1 (ii), it is easy to check

that f and g satisfy the given equation. This proves Theorem 2.1 (ii). The

proof of the theorem is thus complete.

Using the method in the proof of Theorem 2, we may treat similar types of

equations with f ′ replaced by a polynomial or a rational function of z, f, f ′, . . .,

f (k) with coefficients being polynomials or appropriate meromorphic functions

growing more slowly than f .

We include an extension of Theorem 2.1 to the equations (1.2) with polyno-

mial coefficients.

Theorem 2.4: Suppose that f is a transcendental meromorphic function in C

and g is an entire function satisfying the equation

f ′(z) = a(z)f(g(z)) + b(z)f(z) + c(z),

where a 6≡ 0, b, c are polynomials in C. Then g must be linear.

Remark: (i) Unlike Theorem 2.1, when f is rational in Theorem 2.4, g may

be a polynomial of any given degree. For example, for any given integer n ≥ 1,

f = 1/z and g(z) = zn satisfy the equation f ′ = λf(g) with λ = −zn−2.

(ii) Theorem 2.4 is false if without certain restriction on the growth of the

coefficients a, b, c. For example, f(z) = ez + 1, and g(z) = z cos2 z, which are

nonlinear, satisfy the equation f ′ = λf(g) + k with λ(z) = −k(z) = ez sin2 z.

Proof of Theorem 2.4: The proof is similar to the one of Theorem 2.1, using

the fact that T (r, p) = O{log r} = o{T (r, f)} for any polynomial p. This fact

implies that (2.5) still holds. We also have (2.6) and (2.7), as in the proof

of Theorem 2.1. We then obtain that g is a polynomial of degree m ≤ 2. If
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m = 2, following the same arguments in Theorem 2.1, we deduce that T (r, h) =

o{T (r, h)}, where h is a transcendental entire function, as defined in Theorem

2.1. This is impossible. Therefore, m = 1, i.e., g is linear.

3.

In this section we will provide existence and uniqueness results that hold “in

the large” on the whole interval [0, L] ⊂ R (L > 0 a constant). We first show

global existence (see Theorem 3.1 (i)) for continuous functions g satisfying that

g([0, L]) ⊂ [0, L], which needs to be assumed so that the both sides of the

equation f ′(x) = a(x)f(g(x))+b(x)f(x)+c(x) make sense on the interval [0, L].

Then we consider the question of uniqueness for the global solutions (Theorem

3.2(ii)), which seems to be more subtle. We will consider the uniqueness question

for the equations f ′(x) = a(x)f(g(x)) + b(x). In part (a) of Theorem 3.1(ii), g

is assumed to satisfy g(x) ≤ x; and in part (b), g takes the form of xα, α > 0,

which may satisfy that g(x) ≥ x. When g(x) ≥ x, the equation is an functional

differential equation with an advanced argument. The proof of the uniqueness

presented here is elementary. The method may also work in more general cases

for which the calculation can go through. Theorem 3.1 should be compared to

the results of Siu ([S]), where the equation f ′(x) = af(g(x)) with a constant a

was considered and the results depend on the size of the coefficient a, and to

the results of Oberg ([O1]), where more general equations were considered but

only for local solutions.

Let C([0, L]) be the space of real-valued continuous functions on [0, L], and

C1([0, L]) the space of real-valued functions with continuous derivative on [0, L].

It is well-known that with the supremum norm, ||f || := sup0≤x≤L |f(x))|,
C([0, L]) is a Banach space.

Theorem 3.1: Suppose that the functions a, b, c, g belong to C([0, L]), and

g([0, L]) ⊆ [0, L]. Then

(i) the equation f ′(x) = a(x)f(g(x)) + b(x)f(x) + c(x) has a solution f in

C1([0, L]) satisfying the initial condition f(0) = f0 for any given constant

f0;

(ii) the equation f ′(x) = a(x)f(g(x)) + b(x) has at most one solution f in

C1([0, L]) satisfying the initial condition f(0) = f0, if one of the following

holds:

(a) g ∈ C1([0, L]) satisfies that g(x) ≤ x in [0, L];

(b) g(x) = xα(α > 0), provided that L ≤ 1 when α > 1, and l < 1 + α

when α < 1, where l := max0≤x≤L{|a(x)|}.
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Proof: (i) We first prove Theorem 3.1 (i). Write the given equation as the

integral equation

f(x) = f0 +

∫ x

0

(a(s)f(g(s)) + b(s)f(s))ds +

∫ x

0

c(s)ds.

Define the operator S on functions h in C([0, L]) by

S(h)(x) = f0 +

∫ x

0

(a(s)h(g(s)) + b(s)h(s))ds +

∫ x

0

c(s)ds,

for x ∈ [0, L]. Let B be a bounded subset of C([0, L]). For any h ∈ B, denote

f = S(h). We have that ||f ′|| ≤ M , M a constant. By the Mean Value Theorem

|f(x)−f(x1)| ≤ M |x−x1|, for all x, x1 in [0, L]. By the Ascoli–Arzèla theorem,

for any bounded sequence {h} in B, the sequence {S(h)} has a convergent

subsequence, and thus S is a compact operator from C([0, L]) to C([0, L]) (see

e.g. [Be, p. 89 and p. 32]).

Now let G = {h ∈ C([0, L]) : |h(x)| ≤ M1e
2l1x, x ∈ [0, L]}, where M1 =

2(KL + |f0|), K = max0≤x≤L |c(x)|, l1 = max0≤x≤L{|a(x)| + |b(x)|}. Then G

is a closed bounded convex set in C([0, L]). For any h in G, we have

|f ′(x)| ≤ |a(x)h(g)(x)| + |b(x)h(x)| + |c(x)| ≤ l1M1e
2l1x + K.

Hence,

|f(x)| ≤
∫ x

0

|f ′(s)|ds + |f0| ≤
l1M1

2l1
(e2l1x − 1) + KL + |f0|

≤ (KL + |f0|)e2l1x ≤ M1e
2l1x, for x ∈ [0, L].

Therefore, S maps G into itself.

By the Schauder Fixed Point Theorem (see e.g. [Be, p. 90]) that a compact

map from a nonempty closed bounded convex subset of a Banach space to itself

has a fixed point, we obtain a fixed point f of S. This function f ∈ C1([0, L])

is a solution to the above integral equation and thus a solution of the given

equation in the theorem satisfying the initial condition. This completes the

proof of Theorem 3.1 (i).

(ii) Next we prove Theorem 3.1 (ii). First we prove part (a). Let u, v ∈
C1([0, L]) be two solutions of the given equation satisfying the initial condition.

Then for 0 ≤ x ≤ L,

(3.1) w(x) := u(x)− v(x) =

∫ x

0

a(s)[u(g(s))− v(g(s))]ds =

∫ x

0

a(s)w(g(s))ds.
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By the inequality: 2ab ≤ (a2 + b2) and the Hörlder inequality, we obtain that

(3.2) 2w′(x)w(x) ≤ (w′(x))2 + Ll2
∫ x

0

w2(g(s))ds.

Let W (x) =
∫ x

0
w2(g(s))ds. Then by (3.1), (w′(x))2 ≤ l2w2(g(x)) = l2W ′(x),

and then by (3.2),

(3.3)
W ′′(x) = 2w(g(x))w′(g(x))g′(x) ≤ l2W ′(g(x))g′(x) + Ll2W (g(x))g′(x)

≤ l2[W (g(x))]′ + L1l
2W (g(x)),

where L1 = L maxx∈[0,L]{|g′(x)|}.
Let p = −l

√
l2 + 4L1, q = l2−p

2 . Then p + 2q = l2, which implies that p + q =

l2 − q = p+l2

2 and (p + q)q = (l4−p2)
4 = −L1l

2. Therefore, we obtain from (3.3)

that

e−(p+q)x{−(p + q)([W (g(x))]′ − qW (g(x)))} + e−(p+q)x{W ′′(x) − q[W (g(x))]′}
≤ 0,

from which it follows that

{e−(p+q)x([W (g(x))]′ − qW (g(x)))}′ ≤ e−(p+q)x{[W (g(x))]′′ − W ′′(x)}

or

(3.4) {e−px(W (g(x))e−qx)′}′ ≤ e−(p+q)x{W (g(x)) − W (x)}′′.

Note that 0 ≤ g(x) ≤ x. Thus, g(0) = 0. Also, W (0) = w(0) = 0. We then

use integration by parts in the both sides of (3.4) to deduce that

e−px(W (g(x))e−qx)′

≤e−(p+q)[W (g(x)) − W (x)]′ + (p + q)[W (g(x)) − W (x)]e−(p+q)x

+ (p + q)2
∫ x

0

[W (g(s)) − W (s)]e−(p+q)sds

≤e−(p+q)[W (g(x)) − W (x)]′ + (p + q)e−(p+q)x[W (g(x)) − W (x)].

The last inequality uses the fact that

W (g(x)) − W (x) =

∫ g(x)

x

w2(g(s))ds ≤ 0

since g(x) ≤ x. We then have that

(W (g(x))e−qx)′ ≤ e−qx[W (g(x)) − W (x)]′ + (p + q)e−qx[W (g(x)) − W (x)].
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Integrating the both sides of this inequality over [0, x], we obtain that

W (g(x))e−qx ≤e−qx[W (g(x)) − W (x)]

+ (p + 2q)

∫ x

0

e−qx[W (g(s)) − W (s)]ds

≤0,

in view of the fact that p + 2q = l2 ≥ 0. We thus have that W (g(x)) ≤ 0 for

all x ∈ [0, L]. Hence, W (g(x)) ≡ 0, which implies by (3.3) that W ′′(x) ≤ 0.

Thus, W ′(x) is decreasing and then W ′(x) ≤ W ′(0) = 0, which implies that

W (x) ≤ W (0) = 0. By the definition of W (x), we obtain that w(g(x)) = 0 for

all x, which implies that w(x) = 0 for all x ∈ [0, L] by (3.1), i.e, u(x) = v(x) for

all x ∈ [0, L]. This completes the proof of Part (a).

Next, we prove part (b). If α = 1, or α > 1 and L ≤ 1, then it is clear that g

satisfies the conditions of part (a). Thus, the uniqueness follows from part (a).

Now we assume that α < 1. Let u, v and w be as above. Then, we obtain, from

(3.1), that

(3.5) |w(x)| := |u(x) − v(x)| ≤ l

∫ x

0

|w(g(s))|ds.

From this inequality, we obtain that

(3.6) |w(sα)| ≤ l

∫ sα

0

|w(sα
1 )|ds1.

Then, by (3.5) and (3.6), we deduce that

|w(x)| ≤ l2
∫ x

0

∫ sα

1

0

|w(sα
2 )|ds2ds1.

Repeat this iteration process n times, we get

|w(x)| ≤ ln
∫ x

0

∫ sα

1

0

· · ·
∫ sα

n−2

0

∫ sα

n−1

0

|w(sα
n)|dsn · · ·ds1.

As |w(g(x))| is bounded on [0, L] by a constant M > 0, it is not difficult to show

from the above inequality that

|w(x)| ≤ [Mlnxαn−1+αn−2+···+α2+α+1] ÷ [(αn−1 + αn−2 + · · · + α2 + α + 1)

(αn−2 + · · · + α2 + α + 1) · · · (α2 + α + 1)(α + 1)].

Since α < 1, we deduce from the above inequality that

|w(x)| ≤ Mln
x

α
n
−1

α−1

(α + 1)n−1
= M(α + 1)

( l

α + 1

)n

x
α

n
−1

α−1
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As α < 1 and l < α + 1, |w(x)| goes to zero as n → ∞ for any fixed x. We thus

obtain that w(x) = 0, i.e., u(x) = v(x) for all x ∈ [0, L]. This completes the

proof of Part (b). The proof of the theorem is thus complete.
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